Studying Cross-linguistic Structural Transfer in Second Language Learning

Zoey Liua, Haiying Yanga, Wenshuo Qinb, Joshua K. Hartshornec

^aUniversity of Florida; ^bJohns Hopkins University; ^cMGH Institute of Health Professions

Introduction

Learners of a second language make characteristic

errors:

Q1: Are these errors systematic *across* L2s? Q2: Are all aspects of L2 syntax affected equally?

Background

UNIVERSITY of FLORIDA

Theories of Origins of L2 errors

- Lack of access to Universal Grammar (Clahsen and Muysken, 1986)
- Failure to reset parameters of Universal Grammar ()
- Interference in representation (Hernandez, Li, and MacWhinney, 2005)
- Interference during production (Ahn & Ferreira, 2024)

But... very limited data:

- Typical study considers 1-2 L1s or L2s and 1 narrowlydefined phenomenon.
- Overall picture is unclear

Present Study

Approach:

- Train classifier to identify L1 of authors of L2 essay.
- Features classifier finds useful represent L1->L2 transfer (positive or negative.
- Combine 29 learner corpora
 - 133,659 essays
 - 273 L1-L2 pairs
 - Automatic dependency parsing & feature extraction

Experiment 1

Q1: Are errors systematic across L2s?

- Train ridge regression classifier to identify L1 based on
 - POS trigrams (PRON+VERB+NOUN)
 - Dependency trigrams (nsubj+root+obj)

	Baselines			
L2	Majority	Random	Stratified	Model
English	0.23	0.03	0.19	0.48
German	0.08	0.07	0.13	0.24
Norwegian	0.02	0.11	0.11	0.25
Icelandic	0.02	0.14	0.17	0.57 compare
Spanish	0.41	0.11	0.36	0.65
Portuguese	0.06	0.08	0.11	0.30
Italian	0.39	0.19	0.37	0.62
Czech	0.50	0.04	0.42	0.53
Croatian	0.03	0.04	0.09	0.23 harder!
Latvian	0.27	0.08	0.22	0.34 (more L1s)
Finnish	0.28	0.09	0.23	0.38
Chinese	0.14	0.06	0.16	0.31
Korean	0.17	0.04	0.18	0.35
all	0.09	0.02	0.11	0.42

A1: Yes!

Experiment 2

Q2: Are all aspects of L2 syntax affected equally?

- Train ridge regression classifier on interpretable features
 - Text features: numbers of sentences and words, average sentence length, number of unique POS & dependency relations, etc.
 - Morphological features: entropy, standard deviation, & production ratio of morphological features (tense, mood, number, adjective degree, etc.).
 - Synctactic features: entropy of dependency relations, main clause word orders; depency tree depth; etc.

	Exp. 2 (Features)		
L2	Model		
English	0.30		
German	0.21		
Norwegian	0.21		
Icelandic	0.45		
Spanish	0.53		
Portuguese	0.20		
Italian	0.54		
Czech	0.51		
Croatian	0.16		
Latvian	0.31		
Finnish	0.34		
Chinese	0.21		
Korean	0.25		
all	0.26		

most & least predictive features (permutation importance)

Predictive features

the aspect of verbs the form of verb (e.g., finite, infinite) the person of auxiliary the proportion of verb usage

Non-predictive features

the main constituent order the number of auxiliary the head directionality of subordinate clause

Discussion

Summary:

- Consistent L1 "grammatical accent" across L2s
- Only some features highly predictive

Limitations & Questions:

- Multi-colinearity, lots of
- Many features, complicates interpretation
- What predicts which features matter & how to test

Bibliography

- Ahn, D., & Ferreira, V. S. (2024). Shared vs separate structural representations: Evidence from cumulative cross- language structural priming. *Quarterly Journal of Experimental Psychology*, 77(1), 174–190.
- Clahsen, H., & Muysken, P. (1986). The availability of universal grammar to adult and child learners-a study of the acquisition of German word order. *Interlanguage studies bulletin* (Utrecht), 2(2), 93-119.
- Hernandez, A., Li, P., & MacWhinney, B. (2005). The emergence of competing modules in bilingualism. *Trends in cognitive sciences*, 9(5), 220–225.
- Spiegelman, A. (1986). Maus: A survivor's tale. Pantheon Books.