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BackgroundIntroduction

Discussion

Experiment 1

Learners of a second language make characteristic 
errors: 

Q1: Are these errors systematic across L2s? 
Q2: Are all aspects of L2 syntax affected equally? 

Approach: 
• Train classifier to identify L1 of 

authors of L2 essay. 
• Features classifier finds useful 

represent L1->L2 transfer 
(positive or negative. 

• Combine 29 learner corpora  
• 133,659 essays 
• 273 L1-L2 pairs 
• Automatic dependency 

parsing & feature extraction

Present Study

Theories of Origins of L2 errors 
• Lack of access to Universal Grammar (Clahsen and Muysken, 1986) 
• Failure to reset parameters of Universal Grammar () 
• Interference in representation (Hernandez, Li, and MacWhinney, 2005) 

• Interference during production (Ahn & Ferreira, 2024) 

But… very limited data: 
• Typical study considers 1-2 L1s or L2s and 1 narrowly-

defined phenomenon. 
• Overall picture is unclear

Summary: 
• Consistent L1 “grammatical accent” across L2s 
• Only some features highly predictive

Spiegelman, 1980

Crosslinguistic Structural Transfer from L1 —> L2

Are there reliable L1 effects independent of L2? 

Q1: Are errors systematic across L2s? 
• Train ridge regression classifier to identify L1 based on 

• POS trigrams (PRON+VERB+NOUN) 
• Dependency trigrams (nsubj+root+obj)

Experiment 2

While demographics about the writers are minimal – lim-
iting some kinds of analyses – the dataset is rich in L1s and
L2s. We present visualizations of the distribution of the L1s
for each of the 13 L2s in our data in Figure 1. The total num-
ber of essays for each L2 ranges from 78,601 for English and
29,511 for Korean, to 417 for Finnish and 48 for Icelandic. Of
the 273 unique L1-L2 pairs, the most frequent are Korean and
English (N=31,389), Arabic and English (N=10,225), and
Mandarin and Korean (N=9,826). In comparison, the distri-
butions of most other L1-L2 pairs are more sparse, with 135
(49.45%) pairs having fewer than 50 essays.

Experiment 1
With the automatically annotated learner data, we first exam-
ine whether systematic morphosyntactic transfer can be de-
tected across L1-L2 language pairs.
Deriving morphosyntactic representations For each sen-
tence in a given essay, we extracted POS tag trigrams. For
instance, in the following example sentence

I like cheese .

PRON VERB NOUN PUNCT

nsubj root obj punct

the POS tag trigrams are PRON+VERB+NOUN and
VERB+NOUN+PUNCT. We do the same for dependency re-
lations (nsubj+root+obj, root+obj+punct). We concatenate
the POS and dependency trigrams for all sentences in the es-
say in a linear order, resulting in a structural representation of
the essay.

The simplicity of these representations means helps en-
sure that our findings are data-driven and reasonably theory-
neutral. Moreover, prior research has obtained good na-
tive language identification results with similar (if slightly
richer) representations (Berzak et al., 2014; Berzak, Naka-
mura, Flynn, & Katz, 2017).
L1 classification In initial experimentation, we employed
different models, including statistical classifiers such as ridge
classifier, and neural networks such as convolutional neural
network. We chose ridge classifier eventually because of its
efficient computation, as well as that it yields performance
comparable to, or even better than, that of the neural net-
works. This is perhaps not surprising given the data-hungry
nature of the latter (Markov, Nastase, & Strapparava, 2020).
We compared the performance of the ridge classifier to three
baselines: the majority baseline, which predicts the most fre-
quent L1 in the learner data; the random baseline, which pre-
dicts L1s randomly; and the stratified baseline, which pre-
dicts L1s based on their original distributions in the corpora.

We trained and tested classifiers on each L2 separately,
as well as on the entire dataset simultaneously. While each
learner corpus presumably has its own data collection pro-
cess, along with different essay topics, writing instructions,
and numbers of writers, it is not possible to know the relevant
information for sure since some corpora lack detailed docu-
mentation and metadata. To investigate whether the obser-
vations from the two aforementioned classification schemes

hold across different writing settings, we also built classi-
fiers for each individual learner corpus, excluding corpora
with only one L1. All classifiers were evaluated with 3-fold
cross-validation; we used weighted F1 score as a measure of
classifier performance.

Results
As shown in Table 2, for each of the 13 L2s, trigram se-
quences of POS tags and dependency relations, coupled with
ridge classifiers, are able to predict L1s with good perfor-
mance, outperforming all three baselines. This pattern holds
for each individual L2 (Table 2) and also on each individ-
ual corpus (not shown due to space limitation). While per-
formance on the full set of L2s is sometimes lower than for
models trained for specific L2s, this is in part because the
classification problem is harder (there are more L1s in the
full dataset). In any case, performance is still quite good.

These numbers collectively provide support that structural
transfer exists consistently across L1-L2 language pairs, a
finding that perhaps is made even stronger by the fact that our
morphosyntactic representations here are quite simple. Ad-
ditionally, these results also contribute to existing literature
on native language identification (see Goswami, Thilagan,
North, Malmasi, and Zampieri (2024) for a review) which
commonly adopts machine learning with distributional lin-
guistic information to predict L1.

Exp. 1 (Trigrams) Exp. 2 (Features)
L2 Majority Random Stratified Model Model

English 0.23 0.03 0.19 0.48 0.30
German 0.08 0.07 0.13 0.24 0.21

Norwegian 0.02 0.11 0.11 0.25 0.21
Icelandic 0.02 0.14 0.17 0.57 0.45
Spanish 0.41 0.11 0.36 0.65 0.53

Portuguese 0.06 0.08 0.11 0.30 0.20
Italian 0.39 0.19 0.37 0.62 0.54
Czech 0.50 0.04 0.42 0.53 0.51

Croatian 0.03 0.04 0.09 0.23 0.16
Latvian 0.27 0.08 0.22 0.34 0.31
Finnish 0.28 0.09 0.23 0.38 0.34
Chinese 0.14 0.06 0.16 0.31 0.21
Korean 0.17 0.04 0.18 0.35 0.25

all 0.09 0.02 0.11 0.42 0.26

Table 2: L1 classification F1 scores (out of 1) for Exp. 1 (tri-
grams) and Exp. 2 (derived morphosyntactic features). For
Exp. 1, we also show the results for three baselines: Major-
ity, Random, Stratified. Results are shown for models trained
and tested on individual L2s as well as a model trained and
tested on all L2s (final row).

Experiment 2
Having demonstrated that morphosyntactic transfer can be
detected reliably across L1-L2 pairs, now we turn to our sec-
ond research question, which is whether L1 influences spe-
cific aspects of L2 morphosyntax more than others. While
trigram sequences of POS tags and dependency relations are
sufficient to show that structural transfer effects exist and that
such effects are generalizable across L1-L2 pairs, they are not
easy to interpret.

To address this question, we opt for a different approach
via designing a rich hand-curated feature set. Our feature set
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Baselines

A1: Yes!

harder! 
(more L1s)

Q2: Are all aspects of L2 syntax affected equally? 
• Train ridge regression classifier on interpretable features 

• Text features: numbers of sentences and words, average 
sentence length, number of unique POS & dependency 
relations, etc. 

• Morphological features: entropy, standard deviation, & 
production ratio of morphological features (tense, mood, 
number, adjective degree, etc.). 

• Synctactic features: entropy of dependency relations, 
main clause word orders; depency tree depth; etc.
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compare

is largely similar to that of Liu et al. (2022) with some modifi-
cations (see also Brunato, Cimino, Dell’Orletta, Venturi, and
Montemagni (2020)). The feature set combines structure in-
formation at the textual, morphological, and syntactic levels.
Textual features: Features at the raw-text level were mostly
heuristic; examples included the numbers of sentences and
words, average sentence length, the number of unique POS
tags and dependency relations, etc. Since we are interested in
structural transfer, we purposefully excluded lexical features
such as type-token ratio (Richards, 1987) or lexical density
(Malvern, Richards, Chipere, & Durán, 2004), which can be
indicative of language proficiency and development.
Morphological features: For features at the morphologi-
cal level, we included the morphological features of function
words and content words (separating all tokens into these two
categories only in this case based on their POS tags). We also
studied the morphology of lexical verbs and auxiliaries, such
as mood, number, tense, and aspect. In addition, we also ex-
amined the morphological properties of adjective (degree of
comparison, e.g., comparative, superlative), determiners (def-
initeness), nouns (singularity) and numbers (cardinality), as
well as pronouns (e.g., case, number, person). These features
were automatically derived from Stanza (Qi et al., 2020) for
each L2; all the annotations followed the UD standards, hence
comparable across languages.

Given each morphological feature, we measured its proba-
bilistic distribution using entropy (Eq (1)), an information-
theoretic (Cover & Thomas, 2006) measure that has been
widely used as a proxy of linguistic complexity (Futrell,
2024; Juola, 2008) and has also been applied in L2 learning
contexts (Sun & Wang, 2021).

H(X) =�
n

Â
i=1

P(xi)logP(xi) (1)

Others have shown entropy and its mathematical derivations
can be indicative of online processing behaviors (Linzen
& Jaeger, 2014; Pimentel, Meister, Wilcox, Levy, & Cot-
terell, 2023) and typological tendencies (Ackerman & Mal-
ouf, 2013; Levshina, 2019). Here we take entropy as a metric
to reflect how variable the usage of a feature is; a higher value
of entropy corresponds to more variation. Our conjecture is
that there should be distinguishable differences (though pos-
sibly to different degrees when facing different L1-L2 pairs)
in the amount of variation for certain features in L2 produc-
tion that can help with identification of L1s. Aside from en-
tropy and other distributional measures such as standard devi-
ation, we also computed the production ratio of each feature.
Syntactic features At the syntactic level, we extracted fea-
tures from the local and global dependency parse trees of the
essays (Malmasi & Dras, 2014). Selected features included
the distributions of both individual and overall dependency
relations; to approximate these distributions, we also used
entropy. Additionally, we included features that can char-
acterize some information of language typology by previous
literature, such as the distribution of main word orders that

involve subject, head verb, and object; the depth of the depen-
dency parse tree; average dependency length (Liu, 2020); the
proportion of non-projective dependencies (a sentence having
crossing dependency arcs) (R. McDonald, Pereira, Ribarov,
& Hajic, 2005) which are more frequently found in languages
with more flexible word orders (Dyer, 2017) and are con-
sidered to be linguistically more complex as these structures
tend to incur online processing difficulty (Husain & Vasishth,
2015; Gibson et al., 2019); and the proportion of head-final
dependencies (where the syntactic dependent appears before
its head) (Futrell, Levy, & Gibson, 2020).
L1 classification: We used the feature set described above
for L1 classification, again with the ridge classifier. Again,
we trained an omnibus model as well as separate models for
each L2. Classifier performance was indexed by weighted F1
score.

To identify which features are most informative about L1,
we used the measure PERMUTATION IMPORTANCE from the
Python package scikit-learn, which computes the differ-
ence in model performance when all the values for a given
feature are randomly shuffled. A larger absolute value of per-
mutation importance indicates that a certain feature is more
“important” and accordingly, more predictive of L1, whereas
a smaller value corresponds to the opposite.

While our initial hand-curated feature set contains a total of
240 structural features, in practice, the feature set downsizes
to different extents for every L2 (e.g., 80 features for Latvian;
28 for Korean) since the values of some of the features turn
out to be zeros due to either non-existence of certain mor-
phological properties in the data or data sparsity (e.g., case
markers of verb mood in the Czech learner corpora). Taking
that into account, we expect the feature set to not yield models
with high performance. But, if at least some of the features
are potentially transferred during L2 learning and have no-
table effects on predicting L1, we expect the feature set to at
least result in classification performance better than the base-
lines from Experiment 1.

Results
Results from Table 2 align with our expectations: F1 scores
from our hand-curated feature sets outperform all the base-
lines from Experiment 1 for all L2s.

Predictive features
the aspect of verbs
the form of verb (e.g., finite, infinite)
the person of auxiliary
the proportion of verb usage

Non-predictive features
the main constituent order
the number of auxiliary
the head directionality of subordinate clause

Table 3: The most predictive vs. non-predictive features from
the hand-curated feature set.

Of all the features investigated, the most predictive ones
fall into three categories at different levels. At the raw text

most & least predictive features 
(permutation importance)

Limitations & Questions: 
• Multi-colinearity, lots of 
• Many features, complicates interpretation 
• What predicts which features matter & how to test
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