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Structural Transfer from LI —> L2
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Crosslinguistic Structural Transfer from LI —> L2
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Crosslinguistic Structural Transfer from LI —> L2

% Are there reliable L1 effects independent of L2?
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Crosslinguistic Structural Transfer from LI —> L2

<l Are there reliable L1 effects independent of L2? }
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Crosslinguistic Structural Transfer from LI —> L2

~ Are LI effects restricted to specific parts of ]
ﬁ morphosyntax? |
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Previously...

<l Are there reliable L1 effects independent of L2? ]

(

~ Are LI effects restricted to specific parts of ]
| morphosyntax? |

® Focus on narrowly-defined phenomena
e Attend to a handful of language pairs

®* N of learners studied is relatively small



Data-driven Approach

<[ Are there reliable LI effects independent of L2?

-~ Are LI effects restricted to specific parts of
morphosyntax!?
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“ Arabic ® Czech © Dutch ® English ® Finnish ® French ™ German M Hungarian ¥ Indonesian
B Jtalian ™= Japanese ® Korean M Lithuanian © Mandarin ™ Norwegian B Polish ™ Portuguese ® Russian

B Serbian B Spanish ® Swedish B Turkish B Ukranian ® Vietnamese ™ Other

275 LI1-L2 pairs

English (N=61,634) Korean (N=30,028) Spanish (N=8,935)

Czech (N=5,390) Chinese (N=2,632) Portuguese (N=2,216) Croatian (N=2,099)

Norwegian (N=1,335) [talian (N=812) Latvian (N=807) German (N=647) Finnish (N=419) Icelandic (N=48)
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Raw Corpora

Dependency Grammar as Morphosyntactic Representation

Feature
Representations

( obl:tmod \

I visited  Germany  last  year
QRON VERB PROPN  ADJ NOUN J

Machine Learning

® Dependency Grammar (Tesniére, 1959)

e Better syntactic representation (more flexible) across
languages
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Raw Corpora

Automatic Derivation of Dependency Structures
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Machine Learning

® Build dependency parsers for each L2 with training data
from the Universal Dependencies project

e Apply the parsers to L2 data
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Raw Corpora

Are there Reliable L1 Effects Independent of L2?
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Classifying L1 based on Trigram Features
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Classifying L1 based on Trigram Features
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Dependency trigrams
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POS trigrams
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Classifying L1 based on Trigram Features
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Classifying L1 based on Trigram Features
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Classifying L1 based on Trigram Features
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Classifying L1 based on Trigram Features

Vectors Lls
(.3,.7,0,.3,.9,...) Mandarin
(.1,.9,.5,.6,.8,...) > German
(.5,.5,.3,.2, 1,...) Japanese

e Ridge classifier
® A linear classifier able to perform multinomial classification
® Does not assume that errors are normally distributed

e Fast computation (why we chose this classifier)



Classifying L1 based on Trigram Features

Vectors Lls
(.3,.7,0,.3,.9,...) Mandarin
(.1,.9,.5,.6,.8,...) > German
(.5,.5,.3,.2, 1,...) Japanese

® Three baselines
® Majority: predicting the most frequent LI
® Random: randomly predicting Lls

e Stratified: predicting L|s based on their distribution on the
learner corpora



Classifying L1 based on Trigram Features
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There is consistent transfer effect across L1-L2 pairs
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But what is Transferred?
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Are LI effects restricted to specific parts of morphosyntax?
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Are LI effects restricted to specific parts of morphosyntax?
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Are LI effects restricted to specific parts of morphosyntax?
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Trigram features



Are LI effects restricted to specific parts of morphosyntax?

( obl:tmod \

Hand-curated features

e Raw texts features:

;ﬂ\a/\ y f}g\q ® Number of sentences and words
I visited  Germany  last  year ® Morphological features
QRON VERB PROPN ADJ NOUN J ® Distribution of verbs and auxiliaries
e Distribution of aspect, number, mood, etc
o Etc...
Trigram features ® Dependency parse features
® Average depth of parse tree
hard to interpret ® Proportion of head-final dependencies

e Distribution of dependency relations

e Distribution of main constituent orders



Are LI effects restricted to specific parts of morphosyntax?

( obl:tmod \

Hand-curated features

e Raw texts features:

?Q\ﬁ/—\ y f}g\q ®* Number of sentences and words
I visited  Germany  last  year ® Morphological features
QRON VERB PROPN ADJ NOUN J e Distribution of verbs and auxiliaries
e Distribution of aspect, number, mood, etc
e FEtc...
Trigram features ® Dependency parse features
® Average depth of parse tree
hard to Interpret ® Proportion of head-final dependencies

e Distribution of dependency relations

e Distribution of main constituent orders

H(X)=-Y",P(x;)logP(x;)



Are LI effects restricted to specific parts of morphosyntax?

Model Precision Recall FI

Trigrams 041 041 0.41

Hand-curated

/ feature set

*much* less info
than trigrams



Are LI effects restricted to specific parts of morphosyntax?

Model Precision Recall FI

Trigrams 041 041 0.41

Hand-curated

0.26 0.31 0.23
/ feature set
*much® less info
than trigrams
Majority 0.0l 0.04 0.0l
Random 0.08 0.0l 0.02

Stratified 0.10 0.04 0.04
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Which Features are Predictive?

Feature importance of each feature x



Which Features are Predictive!?

Feature importance of each feature x = (F| score including x) - (FI score excluding x)

B No B Yes
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number Moo ense orm  Sof¥n person
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Feature Importance

0.011

0.001




Which Features are Predictive!?

Feature importance of each feature x = (F| score including x) - (FI score excluding x)
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<l Are there reliable L| effects independent of L2?
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Limitations & Ongoing Work

<l Are there reliable L1 effects independent of L2? ]

~ Are LI effects restricted to specific parts of ]
| morphosyntax? |

Feature sets are too large (need dimensionality reduction)
Features aren’t always *that™ interpretable
Feature sets are probably incomplete

Single feature set for all L2 is tricky



Thank you!

Questions?



